DIC (Deviance Information Criterion) is a model selection criterion that is commonly used in Bayesian statistics. The DIC is used to select the best model among a set of models, given a dataset and statistical assumptions.
The DIC is based on the deviance, which is a measure of the goodness of fit of a model. The deviance is calculated by subtracting the log-likelihood of the data under the fitted model from the log-likelihood of the data under a saturated model (a model with a parameter for every observation in the dataset).
The DIC is calculated as follows:
DIC = D̄ + 2pD
where D̄ is the average deviance across all posterior samples, pD is the effective number of parameters in the model, which takes into account both the number of parameters in the model and the amount of information in the data.
Lower values of DIC indicate better model fit, and therefore models with lower DIC values are preferred. However, DIC should not be the only criterion used for model selection, as it does not take into account aspects of the model such as interpretability and theoretical relevance.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page